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Abstract

The general aim of this project is to get an improved understanding of the interac-
tion between wall-generated turbulence and compliant surface coatings using analysis
and direct numerical simulation in an integrated approach, with a view towards the
reduction of turbulent sound production and turbulent drag.

For this purpose, in a first step that is targeted at identifying interesting domains
in the space of parameters describing properties of a compliant wall coating, we are
developing low-dimensional models based on Galerkin projection of the Navier-Stokes
equations onto systems of eigenfunctions obtained via Proper Orthogonal Lecomposi-
tion. Because of the relatively small effort involved in simulating and analyzing such
models, this will allow us to scan large regions of parameter space, allowing us to find
regions that lead to a reduction of turbulent drag and turbulent sound production.

Among the ultimate goals of this project are thus, first, to obtain a fundamental
understanding of flow-structure interaction phenomena for the case of the compliant-
wall/turbulence interaction, and second, to use this understanding to enhance the flight
performance of air vehicles by increasing their lift-to-drag ratio.




1 Statement of Objectives

In this study, research is conducted into the issue of the interaction between a turbulent
boundary laver and an adjacent compliant surface. This work has as one of its main objec-
tives an improved understanding of the dynamical mechanisms at work in such a situation.
Ultimately, this understanding then will be used to manipulate the turbulent flow such that
some of its characteristics are altered in a desirable way. In this respect, we are mostly
interested in two goals. We want to be able to reduce the turbulent drag generated by such
boundary lavers, and we also want to be able to attenuate the noise that is generated by the
turbulent flow.

In order to achieve this, we will try to find regions in the space of parameters describing
mechanical properties of compliant coatings (stiffness, damping) within which the interaction
between the wall and the turbulent flow is such that the above goals can be achieved.

The research proposed here consists of two main components. To be able to determine
regions in the parameter space of the wall coating that are of interest, we will construct
low-dimensional models based on Galerkin projections onto Karhunen-Loeve eigenfunctions.
These models can only approximately describe the dynamics of the turbulent flow. but
because of their low-dimensionality, they allow us to look at large regions of the parameter
space. Once promising combinations of parameters are determined, we will then use accurate
direct numerical simulations to assess the interaction between turbulence and the compliant
wall in more detail.

2 Status of Effort

Our work on developing and incorporating models for the interaction between the turbulent
flow and the compliant wall is proceeding as planned. We have developed a refined low-
dimensional model, that removes many of the limitations of the previous one, results of which
were reported in our previous report. In parallel, we have been working on a computer code
for the direct numerical simulation of turbulence/compliant-wall interaction. Results from
numerical simulations performed with that code are also presented below.

3 Accomplishments

3.1 Introduction

We start this section with a discussion of the approximations and assumptions that go in a
particular low-dimensional model that is described below. We will first present an order-of-
magnitude analvsis of the boundary condition, and then develop an implementation of the
boundary condition in the pressure term under general conditions. It will be shown that for
our case. as a reasonable approximation one can model a wall that moves in the wall-normal
coordinate only, which allows us to deal with non-zero velocity boundary conditions for the




wall-normal and streamwise coordinate only. We will also derive the coupling coefficient
between the wall motion and the fluid mechanics that appears as an additional term in the
equation for the wall-normal velocity component. The net result of this analysis suggests
that for the purposes of our low-dimensional model, neglect of the nonlinear terms in the
boundary conditions is usually quite justifiable.

3.2 Construction of a Low-Dimensional Model for the Wall-Flow
Interaction

In this section we will introduce the dynamical model we have developed for describing the
behavior of near-wall turbulence over a compliant boundary. The dynamical equations are
obtained from:

e Galerkin projection of the Navier-Stokes equations onto a special set of basis functions.
In order to capture as much of the dynamics of the flow in a set of modes that is as
small as possible, we are using Karhunen-Loéve eigenfunctions (derived from a rigid-
wall turbulent flow), which are complemented by Stokes eigenfunctions in order to be
able to account for the compliant-wall boundary condition.

e The assumption that the compliant wall can be modeled as a simple damped mass-
spring system. This means that the type of wall-coating we have in mind can be
envisioned as some sort of a thin rubber layer, and it will become clear below that we
are also assuming the deformations of the wall to be small. These assumptions are
compatible with the results reported in [3]. The deformation of the wall is driven by
pressure fluctuations (for the wall normal deformations), and by the fluctuating wall
shear {or tangential deformations of the wall.

3.2.1 Flow Equations

For these preliminary calculations, we are constructing a model that is analogous to the
one first presented by Aubry et al. [1], which is also described in much greater detail in
the monograph by Holmes, Lumley & Berkooz [5]. This means in particular that we are
dealing with streamwise-invariant modes only, arguing that these modes should dominate
the behavior of our flow just as they have been demonstrated to do in the rigid-wall case.
Thus. we are going to represent our flow fields using a decomposition of the form

u(y, z,t) =U(y) + Z a¥R) Uk (y)elkz 4 cc., (1)
sk

where y and z are the spanwise and wall-normal coordinates, respectively, k is the spanwise
wave number, and j denotes the order of -the basis function corresponding to a given wave
number k. The function %) is the jth basis function corresponding to wave number k.
In the model described below, the index j will assume the values of 1 or 2 only. This
means that. as in [1], we will be using just one POD mode per wave number, described
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by the function ¢*)(y). For the second and third mode, p234)(y), we will use Stokes
eigenfunctions (see below, §3.2.5). The main role of these Stokes functions will be to allow
us to match non-zero velocity boundary conditions at the wall, which are necessary for a
moving wall (remember that the ¢(*)(y) are POD modes from a rigid-wall case. which have
1% (y = 0) = 0). The Stokes functions are chosen such that they are orthogonal to the
Karhunen-Logve modes, so that (%) @Uk) =§,;.

With these preparations, the equations for the fixed wall (for each spanwise wavenum-
ber k. and for each “quantum number” j) are of the form [3]

d(j’k) — Z (bzl,‘rcneanvel + (1 +27ra) T'l,l\c'isc) a(n,k)

n
j JCl) ( vk—k,)
+ D @0
k'\pg

+ D Dpga™IR (a(pma(q,k')*). 2)

n.k',p.q

Since we are actually interested in dealing not with a fixed but with a deformable wall. the
above equations, derived for a fixed wall, are not sufficient to describe that situation. and
need to be extended by

e adding equations that describe the new boundary conditions for a moving wall. and

e taking into account the influence of the pressure term at the moving wall.

3.2.2 Boundary Conditions

Our coordinate system is such that the undisturbed compliant surface occupies the plane y =
0. Let £(z) = [£1.&.&3)(2) be the displacement vector of the compliant surface (remember
that we assume streamwise invariance). The correct set of boundary conditions is given by

’ai(m'}"gvt) =€i7 (3)

where @ is the instantaneous fluid velocity, and ¢ denotes the time derivative of the wall
displacement vector. For our model, we will assume that the surface displacements are small,
more specifically, we assume that [€+| = |€|u,/v < 5, so that the velocity profiles are linear'.
Under this assumption, the boundary condition can be linearized, giving

4;(0,z,t) + 4,,;(0, 2, 8)€;(2,t) = éi(z,t). v (4)

If we express the instantaneous fluid velocity in terms of the fluctuating components u;(x, t)
and the mean U = [U;(y),0, 0],
u; = U + uy, (5)

INote that this magnitude of £ coincides with the findings in [3].




we can write (4) as
ui(O, z, t) + Uiyj(O)fj(Z, t) + u,-,j(O, Z, t)fj(z, t) = &(2, t)? (6)

where we have used U;(0) = 0. Let us now assume that u;(0, z,t) and £;(z.t) are both small
quantities in a sense yet to be defined. Let us consider the velocity gradient tensor at y = 0.
u, ;(0.2.t). We may write '
0 wig U \
—~—

(7)

0 Ug2 U3

~— !
0 Uz2 U33
~~

where we have indicated by an underbrace terms that will vanish for vanishing wall defor-
mation & — 0. Note that for the rigid-wall case £ = 0, we have up, = 0 from continuity.
and u; 3 = 0 because the velocity vanishes identically at the wall. We now proceed to elim-
inate all those terms in (4) that are quadratic in quantities that vanish when § = 0. The
precise magnitude of the errors that this step incurs will be discussed below. The boundary
conditions with the quadratic terms eliminated will be referred to as the “ultra-linearized”
boundary conditions,

u, + Uhpba + wuipée = §:1,
U2 = §2) (8)
U3 + ugeéy = &a.

Note that the above set of boundary conditions still contains two terms, u; 282 and u32&s,
that are nonlinear in the dependent variables of our problem. Because of the complications
associated with this nonlinearity, we want to drop these terms, too. We can estimate their
magnitude from experimental data in Townsend [7]. There we find that at y* = 5. where
y" = u,y/v. u;/u, = 1.54, while uz/u, = 0.306. The behavior of both is linear between
yT =5 and the wall. We may thus estimate -

2
ws & 0.308=
14
Cul
usy ~ 00612 (9)

for values of y* between 0 and 5. Since we have U, &~ u2/v, we see that these derivatives
(at least. uj ;) are not substantially smaller than the mean velocity derivative. However, if
we accept an accuracy of 30%, we can write

up + Uipé = f:l 4
U9 = §2 (10)
u3 = &.

We can now estimate the orders of magnitude of the three components.
2 2 2
u u U
uy &€, Uy B L&, uz X &, (11)
v v v
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and we can also accurately estimate the magnitude of the omitted components (the ones that
were quadratic in terms which vanish when € vanishes). A single example will be sufficient:

u1,3§3
Uy

~ E3ks, (12)

and the others are similar. kj is the wavenumber in the z-direction. Thus. these terms will
be small if the displacement of the surface is small relative to the wavelengtl, of the surface
disturbance. This will almost always be the case. Finally, let us consider the terms that do
not vanish when £ vanishes. We obtain

Wake 30882 4282 g 061022

U & ’ Uus &3

(13)

We have thus shown that by neglecting u; »£> relative to U o€, we make a maximum
error of about 30%. Henceforth, for the low-dimensional model, we will assume (10). because
of its linearity. The relatively large potential error that is involved in this assumption is
one of the reasons why this project will also include direct numerical simulations of the
turbulent .flow over a compliant boundary, in order to be able to assess the effect of the
various simplifications involved in the modeling process. Of course, for the direct numerical
simulations that we are planning, the above two terms will be kept. Since we are using a
dynamical coordinate transformation technique for this simulation (see below). there is no
difficulty in treating the boundary conditions exactly, so the above approximations are not
necessary in that case.

3.2.3 The Pressure Term

In the dynamical systems model for the flow as given by (2) above, the pressure term in
the Navier-Stokes equations has been neglected. Formally, after Galerkin projection. the
pressure term results in an expression of the form

(zb‘j”“),grad (p)) = / Y’ - grad (p) dz., (14)

where V% is one of the three-dimensional, vector-valued basis functions being used in the
projection (in our case, PR (y, 2) = U (y)el*?), and the integral is over the flow domain
of interest. Using the integral theorems and the fact that the w(j'k)(y, z) are solenoidal, this
can be written as a surface integral

(d’(j’k’,grad (p)> = f@b(j"“)* -npdS, (15)

where n is the outward normal on the boundary S of the domain. Using a Fourier repre-
sentation of the pressure, p(y,2) = 3, p(k,y)e’**, we find that the only remaining terms
are

(499, grad (p)) = =p(k, 0)3* (0) + Plk, Yo 23" (tim). (16)
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where v, is the height of our domain.

In [1. 5] it is shown that the term from the upper boundary mainly acts as a random
disturbance to keep the solution at a finite average distance in phase space from the attracting
heteroclinic orbit, which is responsible for the bursting events in the near-wall turbulent flow.
It is demonstrated there that this pressure term, however, does not fundamentally alter the
dynamics of the system. In addition, since we are interested only in comparing the behavior
of the compliant-wall system to the one with the fixed wall, omission of the last term in (16)
is justified. However, the first term on the right-hand side of (16) is zero only for the fixed
wall. but will in general be non-zero for a moving wall. We therefore want to add this term
to our dvnamical equations, so that we end up with

a(j.k) — Z (b] meanvel (1 +2ﬂ_a)b_z'l,l\c/isc> a("’k)
n

j (k') . (q.k—k'
D i, @

K'\p.gq . _
N oern) 1 .
+ Y @™ IR (a2 =k, 0)5* (0). (17)
nk',pg p

3.2.4 Equations for the Dynamics of the Wall

We model the compliant surface in the Fourier space spanned by the spanwise wavenumbers k
as a linear damped mass-spring system driven by the fluid stress at the wall. The stiffness
and damping parameters may be different for different spanwise wavenumbers k. In the
streamwise and spanwise directions, the deformations of the wall are driven by the shear
stress which is easily accessible in the models as a linear term in the model coefficients,

MEER 4 DREE 4+ KEEE = 3K 0 = 3 Mgl 18)
n
¢ : ; N -~ . .‘k
MES + DYES + K38 = Fluan = 3 a0y’ (19)
n

The wall-normal deformations of the compliant surface are driven by the pressure fluctuations
at the boundary. i} _

MyE + D55 + K165 = p(0,k) (20)
We employ capital letters to describe the properties of the compliant surface for clarity;

the lower indices allow for the elastic properties of the wall to be different for different
coordinates.

3.2.5 Basis Functions

We choose to base our low-dimensional model for the turbulent boundary layer over a compli-
ant surface on the eigenfunctions of the rigid-wall boundary layer. Since these eigenfunctions




have ,cil'k) — 0 at the wall and thus do not allow us to satisfv the boundary conditions (10).
we need to introduce additional eigenfunctions to account for the motion of the compliant
surface. In the absence of surface compliance, our models will revert to the rigid-wall case.
Lacking an experimental or computational database on the turbulent flow over a compliant
surface, we are reverting to derive our additional eigenfunctions in an ad hoc fashion. e
choose additional eigenfunctions as solutions of the Stokes equation with periodic motion of
the wall.

We will first approach the Stokes problem with boundary conditions corresponding to
the oscillation of the wall in the streamwise direction. Since our low-dimensional model for
the rigid-wall boundary layer is built upon a Fourier decomposition of the velocity field. we
will use the Stokes equation to generate an eigenfunction for each wavenumber &.

2 [, 18
= | = — ¢S - — (ke — 9

and we will then proceed to assign these solutions to our basis functions qf‘k. The velocity
field is subject to the boundary conditions

4(k,0,2) = cos(0t), (22)
w(k,y — oo,t) — 0. : (23)

In order to satisfy the oscillating boundary conditions, the velocity field u(y.t) can be
represented as a superposition of left- and right-running traveling waves.

ik, y,1) = @ (b, ) + (b y)e ™. (24)

We may solve separately for 4~ (k,y) and 4% (k, y) from the governing equation and boundary
conditions.

at(ky) = AteVVKHE | pre-yV/ kB (25)
a(k,y) = A eWVF 64 BreTUV k2B, (26)
In order for @(y,t) to decay at infinity, the first term in both u* and u™ must disappear.

so that A* = A~ = 0. The boundary condition at the wall may be satisfied by «™ and u~™
together,

a(k,y=0,t) = ut(k,y=0,t)e? +u (ky= 0,t)e (27)
= Bteft 4 Bme Pt (28)
= cos(ft) (29)




The choice BY = B~ = é— satisfies the boundary conditions and results in the following form
for u(y.t):

ak,y,t) = %eiﬁ’e—yvk”ih%e“ime-y\/kz-iﬁ (30)

We choose the eigenfunction which represents streamwise compliance from the initial value
of t(k.y.t). i.e. 9\ (y) = a(k,y.t = 0), gogz’k)(y) = ¢{**(y) = 0. This choice for the form
of the eigenfunction will permit the boundary conditions on the streamwise component of
velocity to be satisfied.

We would ideally prefer each additional eigenfunction to have only a single component
with a non-zero boundary condition. This will not always be possible when we account for
the motion of the wall in all three directions, and the eigenfunctions are orthogonalized.
But in the current case of strictly wall-normal motions and using the “ultra-linearized”
boundary conditions (10), the additional eigenfunctions may be formulated in this fashion
with ¢§2'k)(y = 0) # 0 and gog&k)(y = 0) # 0. All other components are zero at the wall.

In fact. the wall-normal and spanwise components of cpff) and the streamwise component of

,923) are strictly zero.
We now determine the additional eigenfunctions for the wall-normal motion of the wall

in a similar fashion, using the streamfunction formulation of the Stokes equation:

H? 02 10

As before. we superpose left- and right-running wave solutions to this equation ¥(k,y.t) =
et (k. y) —e W~ (k.y), aud we apply the boundary conditions at infinity to ¥* and ¥~
to eliminate the terms which grow exponentially. Next, we enforce the boundary condition on
the spanwise velocity OW(y = 0,%)/0y = 0. The two wave solutions are combined to satisfy
the time-varying boundary conditions at the wall, ik\If(y = 0,k) = cos(ft). This procedure
allows the formation of a divergence-free additional eigenfunction which in turn allows the
low-dimensional models to satisfy the boundary conditions at the compliant surface. The
resulting basis functions are shown in Fig. 1.

After the additional eigenfunctions are obtained as solutions of Stokes problems. the
complete set of basis functions is orthogonalized using a Gram-Schmidt procedure. This

gives
2k) (LK)
k) _, @K _ (1K) ("01 o)

¥1 ¥1 — ¥ ( (1.k) (1.19)) )
. 1 s Y1

0" -0, (33)
k
o5t = 0,
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Figure 1: The wall-normal com%)onent of the compliant-wall eigenfunctions obtained from
the Stokes equations, denoted ¢ )
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and

A0 o
3,k) 1 k 3k)  (Lk
| () + (5,0
(3k) _(3.k) _ 34)
( ,902 ) + (‘Pa 03 )
(Lk) (3.k) (LK)
_(3K) (3.6) ( i ) +’<¢3 %3 )
T s Gk (3R GR _GH))
(90 y Pa ) + <903 y 3 )
The new basis functions are finally normalized so that ("%, o**) =1

3.2.6 Six-Mode Model with Wall-Normal Compliance

The relations (10). (17). and (18-20) constitute a complete set of evolution equations for the
coefficients of the eigenfunctions as well as evolution equations for the motion of the wall.
In the following. we will further simplify this model by assuming that the only significant
motion of the wall is in the wall-normal direction, which means that we will drop (18)
and (19). In this case we need only two additional basis functions (the Stokes modes given
above) to satisfv the wall-normal and streamwise boundary conditions. This way we end up
with a model that includes one POD mode from the fixed-wall case, one Stokes mode for
the wall-normal and streamwise coordinate boundary conditions, respectively, and one mode
for the motion of the wall, which is later eliminated by using the coupling between wall and
fluid motion. Each of the three wall-normal modes is then multiplied by one of two Fourier
modes. which brings the total to six complex modes that make up this model.

We choose to determine the coefficients for the additional eigenfunctions from the bound-
ary conditions at the wall. The pressure may then be determined from the evolution equatlon
for the additional elgenfunctlon representing the wall-normal motion of the wall ¢ ),

Co P - (3,k) (3)_(p.k)
AT p— VR .2
P (y = 0) -
% k—k'
__Z k’k 200 aPk) gla ) (35)
k'.p.q

The cubic terms disappear because this additional eigenfunction is defined to have no stream-
wise component. and there is no streamwise variation in our model. When this expression is
substituted into the equatlon for the wall-normal motion of the wall (20), the time deriva-
tive term merges into the 5-term resulting in a new effective mass of the wall M. In fact,

§§ a® ")Q ) since 3k is the only eigenfunction with a non-zero vertical velocity at the
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wall. Normalizing with this new mass using

3) (3)"
M o= M+p/(6565 (36)
~ = (3)* -
po= p/(Me%) |), (37)
D = D/M, (38)
K = K/M, (39)
results in the following low-dimensional model for the flow over a compliant surface:
s(1k) (1) (p.k (1) k) (gk—k'
PAC R - prk aPk) Z c(k,’k_k,)ma(p )gle )
p k'.p.q
+ Z dsc)lpqa(nk)% (a(nk’)a(q,k’)*) : (40)
r,k'\p.q
w ‘ -~y A ~ ~ . 3
oD RiEy ~ | T
P
(3) K'Y (g.k—k") ,
+ Z c(k’,k—k’)'pqa(p Jale } : (41)
k'\p.q
a(2’k) _ 2 8y |y 0 , (42)
(2,k)
@1 ly=0
Xk
Bk _ 3
a = = (43)
Ps " y=0

3.3 Results

In the following. we will report the findings we obtained from an investigation of the above
six-mode model. where we have used two spanwise Fourier modes & for each of the basis
functions. As a result, we are looking at the behavior of a model described by a system of
ODE:s of order 12.

We started our investigation of this model by systematically varying p, D and K as our
input parameters, and monitoring the resulting bursting frequency as our output parameter.
The role of j is to determine the relative strength of the wall forcing. Increasing p increases
the amplitude of the wall motion, and vice versa. We tried values of p between p = 0.01
and § = 1, within which range our findings do not change qualitatively. For values of p
significantly smaller than that, the wall motion is too small to have a noticeable effect, and
for values of § larger than that range, the dynamics of our system changes qualitatively, so
that the appropriateness of the model becomes questionable.

12




We found that the damping constant D has relatively little effect (the reason for this
will become clear below), whereas the stiffness K turned out to be the most important
parameter. Varying this stiffness parameter we found that the bursting frequency could be
reduced by as much as 30%. We note that one would expect this to correspond to a drag
reduction of the same order, although there is a possibility that the intensity of the bursts
changes through the influence of the compliant wall, which could modify the actual value of
drag reduction that is realized. While we do not see a change in the quality of the bursts
in our model. this might be an artifact of the modeling process, which is another reason for
us to check the findings from our model through a direct simulation that we are currently
working on.

Fig. 2 shows a comparison of the phase-space portraits for the cases of a rigid and a
compliant wall, respectively. The parameters we have chosen for the compliant wall are the
ones that give minimum bursting frequency. The comparison of the two cases clearly shows
that the qualitative dynamics of the flow is hardly changed at all by the presence of the
compliant wall. This is important because it gives credence to our assumption that we can
still describe the velocity distribution of the compliant-wall flow by using the most energetic
eigenmode from a fixed-wall case.

o
o
——
N
o
n
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— “_/
S S

Re(al™
Re(al))
o

L s N . "
05 1 15 5 -1 -0.5 1y 0s 1 15
Fle(a1 }

Re(oag")
(a) (b)

Figure 2: Phase-space projection onto the plane spanned by the real parts of the coefficients
of the POD modes for the first and second Fourier mode, respectively. a), fixed wall, b).
compliant wall. Parameters where d = 0.1, p = 0.1, k£ = 500.

Fig. 3 shows a comparison of the behavior in time of the coefficient of the most energetic
POD mode. These time traces exemplify the intermittent nature of the flow dynamics: the
flow stays calm for extended periods of time (the plateaus in Fig. 3), corresponding to the
rolls being stationary, or very slowly drifting from side to side. Then, during a burst (the
steep gradients in Fig. 3), the rolls begin to move violently, break down, and are recreated
with a phase shift of a half wavelength.
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Most significantly, however, the figure shows that for the compliant-wall case, the quies-
cent periods are longer, which corresponds to a reduced bursting frequency. Quantitatively.
it turns out that in this case the bursting frequency has been reduced by about 30%. We
should alert the reader to the fact that the increase in inter-burst time for the compliant-wall
case is a transient effect for the numerical simulations shown in the figures. As discussed
in (1] (see also [5) for a more detailed discussion), for a model without external disturbances.
the inter-burst times should become longer and longer as the system gets closer to the hete-
roclinic cycle. However, due to finite truncation errors, any numerical simulation will show a
convergence of the inter-burst times towards a finite value. The ultimate value that one finds
in a numerical solution is a function of the numerical accuracy of the integration scheme that
was used and has no physical meaning. In a real flow, on the other hand. there will be pres-
sure disturbances acting on the upper boundary of the near-wall region we are considering
here. In that case, inter-burst times depend on the magnitude of these pressure disturbances
as well as on how strongly attracting the heteroclinic cycle is. If we have a heteroclinic
cvele that is more strongly attracting, then, on average, the solution will be closer to the
heteroclinic cycle, which results in longer inter-burst times. This is precisely the scenario
that is indicated by the longer inter-burst times we observed during the transients in our
numerical experiments. The prolonged inter-burst periods in the transients demonstrate
that the heteroclinic cycle for the compliant wall model is more attracting, and hence, if
numerical accuracy were not a factor, inter-burst times would consistently be higher for the
compliant-wall case.

Finally. we should note that within our numerical accuracy the location of the heteroclinic
cvcles is identical for the rigid-wall and the compliant-wall case. For Fig. 3 we have started
from identical initial conditions for both the fixed-wall and the compliant-wall case, which
means that the results shown in that figure do indeed demonstrate that the heteroclinic cycle
for the compliant-wall case is more strongly attracting than the one for the fixed wall. In
further numerical experiments with different initial conditions (not shown here) we found
qualitatively the same behavior.

Our last figure shows a representation of the temporal dynamics of the wall motion itself.
We can sec that the frequency of the wall motion is about a factor of 50 higher than the
bursting frequency. In addition, the reader should take note of the extremely small amplitude
of the wall fluctuations as shown in Fig. 4. This observation validates our assumption of
small wall deformation we made in deriving our model, and it also demonstrates why the
value of the damping constant in our model has little influence on the dynamics of the flow.
At these tiny fluctuation levels, the energy that is dissipated in the compliant wall is many
orders of magnitude lower that the energy dissipation of the flow, so one would expect to
see next to no influence of energy dissipation in the wall on the flow dynamics.

3.3.1 Direct Numerical Simulation

The problem we are considering is basically a fluid-solid problem. On the fluid side, we
have the incompressible NS equation as the model for fluid motion. On the solid side, we
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Figure 3: Comparison of the time behavior of the real part of the coefficient of the POD mode
for the second Fourier mode. Solid, compliant wall, dashed, fixed wall. Same parameters for
the compliant wall as above.
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Figure 4: Dynamics of the wall motion (second Fourier mode). Same parameters for the
compliant wall as above.
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use a spring-supported elastic plate to model the compliant wall. The equation governing
the wall-normal motion nondimensionalized by the average half channel height ~ and the
laminar centerline velocity ug reads

9%n on, o'n ' dn 0%n 9n
s = — Dy 44
a2 -+ Cl Ot CQ ( + + 2 2) + C3T] C 8 ") C/. 8.’[:23 Du ( )

ozt 8r} T Oxix}
where 7 is the wall-normal displacement, p,, is the pressure disturbance on the wall and Cy.
C,. Cy. Cs. and C,(C,) are the nondimensional wall properties defined as

Cozz

_ Ppmb _1.dh 1 B
Co= ph’ Cl—Repu’ 27 Re? phu?’
1 KEh3 1 T;h 1 T:h .
3 1] T = 55 9 ¥4 = 55 i (40)
Re? p? Re? pv? Re? pv?

The wall parameters are: the plate density p,, and thickness b, the wall damping coefficient
d. the flexural rigidity of the plate B, the streamwise (spanwise) tension per unit width
T.(T,) and the spring stiffness Kg; p is the density of the fluid and v is its kinematic
viscosity. The turbulent channel flow we simulate is assumed periodic in the streamwise (1
or ) and spanwise(z; or z) directions and has a rigid upper and a compliant lower wall that
are separated by an average distance of 2h in the wall-normal(z, or y) direction. Re is its
Reynolds number based on h and uy.

The main difficulty of the simulation is to handle the boundary conditions at the moving
compliant wall. We use a time-varying coordinate transformation to eliminate the deforma-
tion of the compliant boundary in the computational domain. The continuity equation in
the computational coordinate system becomes

u, = 0, (46)
and the momentum equation in the rotational form becomes
ou' oT~! ou? - jop 1
— =~ — + Wy — ! 47
dt 8t 8172 u g (U‘],k uk ]) g a:r] (g U ) ( )

where u' is a contravariant velocity component, the semicolon denotes covariant differentia-
tion. 7! is the inverse coordinate transformation function in the wall-normal direction, and
g is the contravariant metric tensor of the transformation. The equation for pressure p is
obtained bv taking a covariant differentiation with respect to z; on the momentum equation
and can be written as

0 T~ ou’
(9”-17) = [ o W g (ugn — wkg)| - (48)

&cj i

The boundary conditions for velocity must also be transformed into the new coordi-
nate system. The boundary conditions for pressure can then be determined indirectly from
the incompressibility condition via an influence matrix technique. A Fourier-Galerkin and
Chebvshev-Tau pseudospectral method for spatial discretization and a three-sub-step RK
method for time advancement are used for solving the equations. .
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Results The computational domain sizes in the streamwise and spanwise directions are
chosen to be 7 and %, respectively. The computation is carried out using 32 x 65 x 32 (in
z, y, z) grid points for a Reynolds number of 3300. In addition, as a reference case for
comparisons we have simulated the turbulent flow in a canonical channel composed of two
rigid walls with the same flow parameters as those for the compliant wall. For both cases
the mean pressure gradient is calculated at each time step to enforce constant mass flux in
the chaanel.

An important issue in the compliant-wall case is how to choose the compliant wall param-
eters. We currently choose them following [Semenov (1991)], while satisfying the numerical
requirements of stability, the accuracy of the representation of the physical fluid-solid inter-
action. and an acceptable numerical time step. The damping factor of the compliant wall
plays a key role in the simulations. It should be large enough to inhibit a dynamic instability
of the interaction between the compliant wall and the turbulent flow. On the other hand.
the compliant wall should move intensively enough so that it physically interacts with the
turbulence rather than just generating some numerical noise in the computational system.
These requirements lead to values for the wall parameters that are not very close to those
of materials that others have used in their experiments, because the small pressure distur-
bance due to the low Reynolds number of our DNS cannot excite a sufficient motion of an
experimental compliant wall. Nevertheless we believe to observe similar physics. The third
numerical requirement is that the natural frequencies corresponding to pressure disturbances
of high wave numbers have to be low enough to guarantee an acceptable time step in the
numerical simulation. In a monoharmonic approximation for the compliant wall motion, the
forcing pressure disturbance is given in the harmonic form

Pu = Re[ﬁweikzz+ikzz—iot]_ (49)

The n-ural circular frequency of the free vibration f and the time constant of damping C
for the compliant wall are then found to be

0 (no free vibration) if 8> 2w,
f=910 . 21 . (50)
5167 — 4w?|? if 8 < 2w,
(42— 42)2| >
o Q[ﬁ (6% — 4w?) ] if f > 2w, (51)
2671 if 8 < 2w,
where 8 and w are defined as
C 1
B = 6—1 w? = oA [Co(k2 + k2 + 2k2k2) + Cok2 + C.k2 + Cs) . (52)
0 0

The steady amplitude (in wall units) of the compliant wall displacement 7* and the normal
velocity of the wall V| are
rt = KdﬁwRerj

CO(JJ (53)
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Figure 5: The results of the monoharmonic analysis for the compliant wall motion for Re =
3300. Re, = 140, p,, = 0.01, with ky = k2 + k2.

V= de)waRe'

v CowRe, (54)

Here. Re, is the turbulent Reynolds number on the compliant wall, and Kj is the dynamic
coefficient which can be calculated from

52 2
Kg= (1—;) + A . (55)

N

Figure 5 shows the results of a monoharmonic analysis for the compliant wall motion. These
and the later simulation results indicate that the compliant wall we used in the simulation
satisfies the numerical requirements. The flow and the compliant wall parameters in the
simulation are given in Table 1.

Figure 6 shows the history of the total drag (represented by the mean streamwise pres-
sure gradient) and the skin friction coefficients for the two cases. The skin friction on the
compliant wall is 12% less than that on a rigid wall in the reference case, while they are
about the same on all rigid walls in both cases.The turbulent Reynolds number is 138 based
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p 1000kg m™2  pp, 800kg m~3

h 0.005m b 0.003 m
v 1x107¢m?s™! 2000kg m~2 57!
Re 3300 B 3x10%kgm2s7?
T, 0.001kg s~2
T, 0.0001 kg s~2

Kg 10000 kg m~2 s72

Table 1: Values of the flow and the compliant wall parameters.
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Figure 6: Time traces of (a) total drag, (b) skin friction on the compliant wall in the
compliant wall case and a rigid wall in the reference case and (c) skin friction on the rigid
wall in the compliant wall case and a rigid wall in the reference case. solid line: the reference
case. dashed line: the compliant wall case.
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Figure 7: Comparisons of (a) turbulent kinetic energy, (b) turbulent kinetic energy produc-
tion, (¢) RMS streamwise vorticity and (d) Reynolds shear stress. The average position of
the compliant wall is at y = —1. solid line: the reference case, dashed line: the compliant
wall case '

on the compliant wall friction velocity and 147 on a rigid wall. Consistent with these obser-
vations. we achieve a total drag reduction of 6% in a channel with one compliant wall. The
amplitude of the compliant wall motion is so small that most of the present drag reduction
is due to the wall-normal velocity of the compliant wall rather than the wall displacement
and the total drag is almost completely from skin friction. It seems that the effects of the
compliant wall on turbulence are localized, which can also be demonstrated by comparing
the turbulence statistics in figure 7.

The magnitude of turbulent kinetic energy k, turbulent kinetic energy production P, RMS
streamwise vorticity w’ and Reynolds shear stress —(uv) are reduced near the compliant wall
as seen in figure 7. The quadrant analysis in figure 8 shows that the reduction of Reynolds
shear stress is due to the decreased intensity of Q2 and Q4 events. As commonly observed in
turbulent flows with skin friction reduction manipulations, the compliant wall shifts the log-
law region in the mean streamwise velocity upwards, away from the wall (see figure 9). The
mechanisms of skin friction reduction appear to be related to the stabilizing or weakening
effects of the compliant wall on the near-wall streamwise vortices, which are regarded to play
a dominant role in near-wall turbulent transport phenomena (Robinson 1991).

Instantaneous compliant wall shapes and the contours of wall-normal velocity at the wall
at two instants are shown in figure 10. The skin friction on the wall is low at one instant
and high at the other. The contours of streamwise fluctuating velocity in the z-z-planes
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Figure 8: Comparisons of quadrant analysis. The average position of the compliant wall is
at y = —1. solid line: the reference case, dashed line: the compliant wall case.

Figure 9: Mean streamwise velocity in the compliant wall case near (a) the compliant wall
and (b) the rigid wall.
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{b)t=2420

Figure 10: Wall-normal displacement and contours of wall-normal velocity at two instants
of (a) low skin friction and (b) high skin friction on the compliant wall.

near the compliant wall are plotted at the same two instants in figure 11. From figure 10
and figure 11. it can be seen that the compliant wall forms a longitudinal ridge beneath a
high-speed streak and a corresponding groove beneath a low-speed streak, even though the
contours of the instantaneous wall-normal velocity at the wall are intermittent and oval-
shaped. [Kang & Choi (2000)] made similar observations for the case of their active wall
control for skin friction reduction. At the instant of low skin friction on the compliant wall.
the near-wall streaky structures are very obvious. Their breakdown is observed at the instant
of high skin friction at the wall.

Discussion First results of our direct numerical simulations of turbulence on a compliant
wall indicate a clear potential for drag reduction. While it is true that the results described
above were obtained for a somewhat non-generic case at a very low Reynolds number. we find
that the effect of the compliant wall is limited to the near-wall region, which can be assumed
to show a universal behavior that is only moderately affected by Reynolds number. It is
therefore not unreasonable to assume that the behavior that we found for our low-Reynolds
number case will persist into the range of higher Reynolds numbers, and for wide channels.
Of course. this assumption will have to be tested in numerical simulations as well. We have
already started such an investigation of turbulence in a wide compliant channel at the time
of this report.

3.3.2 Conclusions

The low-dimensional model described above indicates that it might be possible to signifi-
cantly reduce the drag of wall-bounded turbulent flow using a compliant wall of appropriate
stiffness. The required stiffness for optimal reduction of bursting frequency has to be such
that the eigenfrequency of the wall is one to two orders of magnitude higher than the bursting
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(a)t = 2360

Figure 11: Contours of fluctuation streamwise velocity at the plane y* = 2 parallel to the
average position of the compliant wall at two instants of (a) high skin friction and (b) low
skin friction on the compliant wall.

frequency. which corresponds to a wall that will show only minute deformations under the ac-
tion of the turbulent pressure fluctuations. This finding is compatible with the experimental
results reported by Choi et al. [3].

Because of the smallness of the wall deformations it is clear that the internal damping of
the wall material does not play a significant role in reducing turbulent fluctuations. Rather.
the reduction in bursting frequency seems to be an indirect effect of the presence of the
moving wall. which keeps the system close to its fixed point for a longer time.

We should also emphasize that we are well aware of the inherent danger of the simplifica-
tions we introduced in desicaing the model that is described above. It is for this reason that
we are currently concentrating our efforts on developing a direct numerical simulation of tur-
bulent flow over a compliant wall, which will be used to verify the predictions of our model
as well as to refine the model as necessary. In particular, once we have the direct numerical
simulation. we can use the data to directly calculate eigenfunctions for the compliant-wall
case, so that we do not have to rely on the ad hoc Stokes eigenfunctions we were using in
the present study. We expect this simulation to give us direct insight into the modifications
of the flow dynamics that are caused by wall compliance, and thus to allow us to refine
our modeling assumptions. As a final remark, we note that in this project we view direct
numerical simulation and low-dimensional modeling as complementary techniques. Thus,
our simulations will allow us to improve the model, and the improved model will give more
accurate predictions of optimal parameters for drag reduction.
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